Hexadecimal Number System

Rumman Ansari   Software Engineer   2025-05-11 11:53:19   478  Share
Subject Syllabus DetailsSubject Details
☰ TContent
☰Fullscreen

Table of Content:

🔷 Hexadecimal Number System

📘 Introduction:

The Hexadecimal Number System is a base-16 number system.
It is widely used in computer systems and digital electronics.

  • It uses 16 digits:

    • From 0 to 9

    • And A to F, where:

      • A = 10

      • B = 11

      • C = 12

      • D = 13

      • E = 14

      • F = 15

🔢 Digits Used:


0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F


🧠 Positional Value Concept:

Each digit in a hexadecimal number represents a power of 16, depending on its position.

Value of a Hexadecimal Number dₙ dₙ₋₁ ... d₀ =
dₙ × 16ⁿ + dₙ₋₁ × 16ⁿ⁻¹ + ... + d₁ × 16¹ + d₀ × 16⁰


✅ Example 6:

Convert (1A5C)₁₆ to Decimal:

Step-by-step:


= 1 × 16³ + A × 16² + 5 × 16¹ + C × 16⁰  
= 1 × 4096 + 10 × 256 + 5 × 16 + 12 × 1  
= 4096 + 2560 + 80 + 12  
= (6748)₁₀

✔ So, (1A5C)₁₆ = (6748)₁₀


✅ Another Example:

(2F)₁₆ to Decimal


= 2 × 16¹ + F × 16⁰  
= 2 × 16 + 15 × 1  
= 32 + 15  
= (47)₁₀


🔄 Hexadecimal to Decimal Table:

Hex Decimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 11
C 12
D 13
E 14
F 15

💡 Applications of Hexadecimal:

  • Memory addresses in programming (e.g., 0xFF2A)

  • Color codes in web design (e.g., #FF5733)

  • Compact representation of binary data (1 hex digit = 4 binary bits)

  • Used in machine-level programming


🧾 Summary:

Feature Description
Base 16
Digits Used 0–9, A–F
Positional System Yes
Easy to Convert With Binary
Commonly Used In Computers, Web, Memory addresses



Stay Ahead of the Curve! Check out these trending topics and sharpen your skills.