Equivalence Propositional Laws

Rumman Ansari   Software Engineer   2025-12-15 07:44:36   60  Share
Subject Syllabus DetailsSubject Details
☰ TContent
☰Fullscreen

Table of Content:

1. Identity Laws

LawExpression
Identity (AND)P ∧ T ≡ P
Identity (OR)P ∨ F ≡ P

2. Domination Laws

LawExpression
Domination (OR)P ∨ T ≡ T
Domination (AND)P ∧ F ≡ F

3. Idempotent Laws

LawExpression
Idempotent (OR)P ∨ P ≡ P
Idempotent (AND)P ∧ P ≡ P

4. Double Negation Law

LawExpression
Double Negation¬(¬P) ≡ P

5. Commutative Laws

LawExpression
Commutative (OR)P ∨ Q ≡ Q ∨ P
Commutative (AND)P ∧ Q ≡ Q ∧ P

6. Associative Laws

LawExpression
Associative (OR)(P ∨ Q) ∨ R ≡ P ∨ (Q ∨ R)
Associative (AND)(P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R)

7. Distributive Laws

LawExpression
Distributive (AND over OR)P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
Distributive (OR over AND)P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

8. De Morgan’s Laws

LawExpression
De Morgan (OR)¬(P ∨ Q) ≡ ¬P ∧ ¬Q
De Morgan (AND)¬(P ∧ Q) ≡ ¬P ∨ ¬Q

9. Absorption Laws

LawExpression
Absorption (OR)P ∨ (P ∧ Q) ≡ P
Absorption (AND)P ∧ (P ∨ Q) ≡ P

10. Negation Laws

LawExpression
Negation (OR)P ∨ ¬P ≡ T
Negation (AND)P ∧ ¬P ≡ F

11. Implication Law

LawExpression
ImplicationP → Q ≡ ¬P ∨ Q

12. Biconditional Law

LawExpression
BiconditionalP ↔ Q ≡ (P → Q) ∧ (Q → P)

13. Contrapositive Law

LawExpression
ContrapositiveP → Q ≡ ¬Q → ¬P

14. Alternative Ways to Write the Same Equivalences

Logical Operator Variations

Standard FormAlternative Forms
P ∧ QP AND Q, P · Q
P ∨ QP OR Q, P + Q
¬PNOT P, P'
P → QIF P THEN Q, ¬P ∨ Q
P ↔ QP iff Q, (P → Q) ∧ (Q → P)

Alternative Equivalent Expressions

LawEquivalent Forms
IdentityP ∧ T ≡ T ∧ P, P ∨ F ≡ F ∨ P
DominationP ∨ T ≡ T, T ∨ P ≡ T
IdempotentP ∧ P ≡ P, P ∨ P ≡ P
Double Negation¬¬P ≡ P
CommutativeP ∧ Q ≡ Q ∧ P, P ∨ Q ≡ Q ∨ P
AssociativeP ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R
Distributive(P ∨ Q) ∧ R ≡ (P ∧ R) ∨ (Q ∧ R)
De Morgan¬(P ∨ Q) ≡ ¬P ∧ ¬Q, ¬(PQ) ≡ P' + Q'
AbsorptionP + PQ ≡ P, P(P + Q) ≡ P
NegationP + P' ≡ T, PP' ≡ F
ImplicationP → Q ≡ ¬P ∨ Q ≡ P' + Q
BiconditionalP ↔ Q ≡ (P ∧ Q) ∨ (¬P ∧ ¬Q)
ContrapositiveP → Q ≡ ¬Q → ¬P



Stay Ahead of the Curve! Check out these trending topics and sharpen your skills.