Number System Conversion
Table of Content:
✅ Number System Conversion Chart
There are 12 possible conversions among the four number systems:
| From \ To | Binary | Octal | Decimal | Hexadecimal |
|---|---|---|---|---|
| Binary | — | ✅ Binary → Octal | ✅ Binary → Decimal | ✅ Binary → Hex |
| Octal | ✅ Octal → Binary | — | ✅ Octal → Decimal | ✅ Octal → Hex |
| Decimal | ✅ Decimal → Binary | ✅ Decimal → Octal | — | ✅ Decimal → Hex |
| Hexadecimal | ✅ Hex → Binary | ✅ Hex → Octal | ✅ Hex → Decimal | — |
Decimal Number System
Uses base 10. Digits range from 0 to 9.
Example: (1024)10 = 1×103 + 0×102 + 2×101 + 4×100 = 1024
Binary Number System
Uses base 2. Digits are 0 and 1.
Example: (1101)2 = 1×23 + 1×22 + 0×21 + 1×20 = 13
Octal Number System
Uses base 8. Digits range from 0 to 7.
Example: (658)8 = 6×82 + 5×81 + 8×80 = 432
Hexadecimal Number System
Uses base 16. Digits range from 0–9 and A–F.
Example: (1A5C)16 = 1×163 + 10×162 + 5×161 + 12×160 = 6748
Conversion Techniques
Decimal to Binary: Divide by 2 and read remainders bottom to top.
Binary to Decimal: Multiply each bit by 2n from right to left.
Decimal to Octal/Hex: Same method, but divide by 8 or 16 instead.
Binary to Octal/Hex: Group binary digits (3 for octal, 4 for hex), then convert.